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Abstract
An attempt to formulate the extensions of the KP hierarchy by introducing
fractional-order pseudo-differential operators is given. In the case of the
extension with the half-order pseudo-differential operators, a system analogous
to the supersymmetric extensions of the KP hierarchy is obtained. Unlike the
supersymmetric extensions, no Grassmannian variable appears in the hierarchy
considered here. More general hierarchies constructed by the 1/N th-order
pseudo-differential operators, their integrability and the reduction procedure
are also investigated. In addition to finding the new extensions of the KP
hierarchy, a brief introduction to the Riemann–Liouville integral is provided to
yield a candidate for the fractional-order pseudo-differential operators.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

Integrable hierarchies of nonlinear partial differential equations (PDEs) have been vigorously
studied from the perspective of physics as well as mathematics. Among them the Kadomtsev–
Petviashvili (KP) hierarchy and its variants appear in many areas of theoretical physics. In
particular, the supersymmetric extensions of the KP hierarchy play important roles in non-
perturbative superstring theories [1], and connections are suggested between the dispersionless
limit of the KP hierarchy and topological field theory [2, 3].

Concerning the construction of the KP hierarchy in the Lax formalism, the non-
commutative algebra of pseudo- or micro-differential operators plays a fundamental role [4, 5].
For the standard KP hierarchy, the associated pseudo-differential operator can be regarded as
an ordinary integral operator, which enjoys the generalized Leibniz rule. The aim of this
paper is to enquire into the practicability of extensions of the KP hierarchy by introducing
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fractional-order pseudo-differential operators. In this respect, we recall that the survey of the
fractional-order integration and differentiation is known as fractional calculus.

The fractional calculus, which usually stands for the differentiation and integration of
arbitrary order so that the terminology is somewhat misleading, has a long and rich history
[6, 7]. The standard definition of the arbitrary-order integration/differentiation is mostly given
by the so-called Riemann–Liouville integral these days. Although the fractional calculus has
been well studied in mathematics, it is not an ordinary mathematical tool in the theory of
integrable systems at present. Apart from integrable systems, there are many applications
of fractional calculus in physics; for example, one of the present authors analysed the
supersymmetric field theories through half-order differential operators [8], other important
work in the subject has been performed on non-differential evolution equations, chaotic
dynamical systems, material physics and so on [9].

In the present paper, we consider extensions of the KP hierarchy by introducing the
fractional-order integral/differential operators as pseudo-differential operators, which should
be interpreted as the power roots of ordinary integration/differentiation; the situation is similar
to the supersymmetric extensions of the KP hierarchy [10–13], where the square roots of
integral/differential operators are brought in through superspace formulation. In contrast, we
extend the KP hierarchy by making use of fractional-order integral/differential operators with
respect to purely ‘bosonic’ variables, for which the relevant non-commutative algebra is the
generalized Leibniz rule of fractional order. We will see in the following that the extension of
the KP hierarchy by half-order integral/differential operators leads to a hierarchy similar to
that of supersymmetric extension, as expected.

This paper is organized as follows. In the next section, we give a very brief review of
the Lax formulation of the KP hierarchy and its supersymmetric extension for the purpose
of determining notation. In section 3, we make an attempt to generalize the KP hierarchy
by fractional-order integral/differential operators and find the formulation works consistently.
In section 4, we introduce the Riemann–Liouville integrals as a candidate for the pseudo-
differential operators of fractional order, which supply the generalized Leibniz rule being used
in section 3. The final section is devoted to concluding remarks.

2. The Lax formulation of the KP hierarchy

In this section we give a sketch of the Lax formulation of the standard KP hierarchy, its
k-reduction and supersymmetric extensions, to fix the notation throughout the present paper.

2.1. The standard KP hierarchy

The KP hierarchy within the framework of the Lax formulation is generated by the non-
commutative algebra of the pseudo-differential operator ∂−j with respect to an independent
variable x, which acts on a function through the generalized Leibniz rule

∂−j ◦ f =
∞∑

k=0

(−j

k

)
f (k)∂−j−k. (1)

Here, we consider the case of integer j , the order of pseudo-derivative or integral, although
formula (1) is valid for non-integer j . We define the Lax operator of the (one-component) KP
hierarchy by

LKP = ∂ +
∞∑

j=1

uj+1∂
−j (2)
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where uj are dependent variables of space x and time variables being introduced below. The
coefficient of ∂0 can be set to zero without loss of generality. We assign the degree of
the differential operator ∂ as one, standing for deg[∂] = 1, and assume that all the terms
in the Lax operator (2) have equal degree, i.e. deg[uj ] = j . This assignment of the degree is
naturally justified by the tau-function formalism [4]. Introducing infinite directions of ‘time’
t = (t1, t2, t3, . . .) with deg[tn] = −n, we may consider the Lax equations

∂LKP

∂tn
= [Bn,LKP] (n = 1, 2, 3, . . .). (3)

If we define the nth ‘Hamiltonian’ Bn by the non-negative power part in ∂ of the nth product
of the Lax operator (2), denoting Bn := (Ln

KP

)
+ = (Ln

KP

)
�0, we will obtain an infinite tower

of nonlinear PDEs, the standard KP hierarchy. Note that the lowest time variable t1 should
be identified with the space variable x due to the first Lax equation. The lowest PDE, the KP
equation, is obtained by comparing the coefficients of ∂−j on each side of (3) for t2 and t3
developments of u2, u3 and u4 and eliminating the u3 and u4,

3

4

∂2u

∂y2
=

[
∂u

∂t
− 1

4
u′′′ − 3uu′

]′
(4)

where u := u2, y := t2 and t := t3, and the prime is the derivative with respect to x(=t1).

2.2. The k-reduction

The KP hierarchy is an unconstrained system in the sense that the dependent variables uj are
independent of each other in the Lax operator (2). This independence is not necessary: we
can impose constraints between dependent variables without loss of consistency. The most
familiar are the k-reductions of the KP hierarchy for an integer k � 2, for which the constraints
are Lk

KP = Bk , i.e. all the coefficients of negative powers in ∂ of Lk
KP are zero,(Lk

KP

)
−m

= 0 (5)

where m = 1, 2, . . . . This is equivalent to the tlk independence of the system, for a natural
number l. For example, the 2- and 3-reductions lead to the KdV and the Boussinesq hierarchy,
respectively. For later purposes, we make the trivial remark that the reduction conditions (5)
are compatible with the Lax equation: the conditions are invariant with respect to the time
evolutions, (

∂Lk
KP

∂tn

)
−m

= ([Bn,Lk
KP

])
−m

= ([Bn,Bk])−m

= 0

because the Hamiltonians have only derivatives, i.e. non-negative power terms in ∂ .

2.3. Supersymmetric extensions

Supersymmetric extensions of the KP hierarchy (SKP) have been vigorously studied by both
mathematicians and physicists. In particular, they appear in the context of superstring and/or
quantum gravity theories [1]. The first supersymmetric extension was done by Manin and
Radul [10], referred to as MRKP3, in which the differential operator in superspace, i.e. the
superderivative, and its inverse,

D := ∂

∂θ
+ θ

∂

∂x
D−1 = θ +

∂

∂θ

(
∂

∂x

)−1

(7)

3 Another formulation of SKP is given in [11, 12].
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play the parallel roles of ∂ and ∂−1 in the standard ‘bosonic’ KP. Here, θ is a Grassmann odd
variable, accordingly the square of D turns out to be the ordinary derivative,

D2 = ∂

∂x
. (8)

In other words D can be regarded as a square root of ∂ . According to the superspace formalism,
superfields �j play the role of dependent variables in the MRKP, whose Lax operator is
defined as

LMR = D +
∞∑

j=1

�jD
1−j . (9)

Besides the bosonic time variables t, infinite fermionic time variables (τ1, τ2, . . .) must be
introduced. Consequently, we observe that both the bosonic and fermionic time flows of the
superfields make up a system of super-differential equations.

To make a comparison with another extension of the KP hierarchy considered in the
following section, we exhibit the lowest degree bosonic time flows of the MRKP, which are
given by the Lax equation of even order,

∂LMR

∂tn
= [B2n,LMR] (10)

where the Hamiltonian is the standard one: B2n := (L2n
MR

)
+. In addition, there certainly exist

fermionic time flows given by the odd order Lax equation, we do not need them, however, in
the present consideration, for details see [10, 13]. One can show the lowest degree equation
of (10) is an extension of the KP equation (4), which can be given in the component form [14]

3

4

∂2u

∂y2
=

[
∂u

∂t
− 1

4
u′′′ − 3uu′ +

3

2
v′′v

]′
(11a)

3

4

∂2v

∂y2
=

[
∂v

∂t
− 1

4
v′′′ − 3

2
(uv)′

]′
(11b)

where the bosonic variable u and the fermionic one v are defined by D�2 = v + θu, and
t := t3 and y := t2.

Besides the MRKP, various types of supersymmetric extension of the KP hierarchy are
considered [15, 16]. For example, a non-standard Lax equation by Brunelli and Das [17] leads
to an extension of the KP equation of the following form,

3

4

∂2u

∂y2
=

[
∂u

∂t
− 1

4
u′′′ − 3uu′ − 3

2
v′′v − 3

2
v′

∫ x ∂v

∂y
dx − 3

2
v
∂v

∂y

]′
(12a)

3

4

∂2v

∂y2
=

[
∂v

∂t
− 1

4
v′′′ − 3

2
(uv)′ − 3

2
u

∫ x ∂v

∂y
dx +

3

2
v′

∫ x ∂u

∂y
dx

]′
(12b)

where, similar to the MRKP, u and v are bosonic and fermionic variables, respectively. In
contrast to (11a) and (11b), there appear non-local terms in these coupled equations.

3. Extensions of the KP hierarchy by fractional-order integral operators

This section provides the extensions of the standard KP hierarchy by fractional-order integral
operators, which is the main topic of the present paper.
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3.1. Extended Lax operator

Recall that the Leibniz rule (1) is applicable when the order j of an ‘integral’ is an arbitrary
real (or complex) number. It will be interesting to consider the case when the Lax operator
includes fractional-order integrals, and then, to enquire whether the system gives a consistent
hierarchy or not4. In the following consideration, we accept the axiom that the fractional-order
integral operators exist and also the exponential law ∂−i∂−j = ∂−(i+j) holds for fractional i
and j , for a while. We will see the Riemann–Liouville integral of fractional order enjoys these
requirements in the next section.

3.1.1. Extension by the half-order integrals. For the simplest case of an extension of the KP
hierarchy, we consider the Lax operator including the half-order integrals in addition to the
Lax operator (2). We restrict ourselves to the case that the highest order term is ∂ as in the
KP. Accordingly, we define the most general half-order integral operator,

M1/2 = v3∂
−1/2 + v5∂

−3/2 + v7∂
−5/2 + · · · (13)

where vm are the dependent variables of degree m/2. We have set the ‘differentiation’ term
∂1/2 to be absent: this resulted from the Lax equation defined below. We remark that the Lax
operator composed only of the half-order integrals (13) itself does not produce any consistent
hierarchy, because its products do not close in the half-order integral operators: we need
integer-order integral/differential operators to close the algebra. With this definition, we
consider the following Lax operator,

L1/2 = LKP + M1/2 (14)

and the standard Lax equation for the flows with respect to the time t = (t1, t2, . . .),

∂L1/2

∂tn
= [Bn,L1/2]. (15)

If we take the standard definition of the Hamiltonian, Bn := (Ln
1/2

)
+, whose lower degree

sequence is

B1 = ∂ (16a)

B2 = ∂2 + 2v3∂
1/2 + 2u2 (16b)

B3 = ∂3 + 3v3∂
3/2 + 3u2∂ + 3(v5 + v′

3)∂
1/2 + 3u3 + 3u′

2 + 3v2
3 (16c)

then we find closed coupled nonlinear PDEs, an extended KP hierarchy by the half-order
integrals, hereafter eKP1/2. Other ‘non-standard’ definitions of Bn such as

(Ln
1/2

)
�1/2 cause

inconsistency. To show the consistency of the system, we derive the lowest degree coupled
PDE from (15), the extended KP equation by the half-order integral, i.e. the eKP1/2 equation.
Just as for the original KP equation (4), we need the first two non-trivial equations of (15).
The coefficients of the negative powers in ∂ of

∂L1/2

∂t2
= [B2,L1/2] (17)

are

∂−1/2:
∂v3

∂y
= 2v′

5 + v′′
3 (18a)

4 Here we restrict ourselves to rational j ; if j is irrational, the Lax equation could not give a closed system, see the
following argument.
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∂−1:
∂u2

∂y
= 2u′

3 + u′′
2 + 2v3v

′
3 (18b)

∂−3/2:
∂v5

∂y
= 2v′

7 + v′′
5 + 2(v3u2)

′ (18c)

∂−2:
∂u3

∂y
= 2u′

4 + u′′
3 + 2u2u

′
2 + 3v5v

′
3 + v3v

′
5 − v3v

′′
3 (18d)

whereas those of
∂L1/2

∂t3
= [B3,L1/2] (19)

are

∂−1/2:
∂v3

∂t
= 3v′

7 + 3v′′
5 + v′′′

3 + 6(v3u2)
′ (20a)

∂−1:
∂u2

∂t
= 3u′

4 + 3u′′
3 + u′′′

2 + 6u2u
′
2 + 6(v3v5)

′ +
3

2

(
v′2

3 + v3v
′′
3

)
. (20b)

Eliminating the dependent variables u3, u4, v5 and v7, we find the coupled PDE with non-local
term

3

4

∂2u

∂y2
=

[
∂u

∂t
− 1

4
u′′′ − 3uu′ +

3

8
(v2)′′ − 3

4
v′

∫ x ∂v

∂y
dx − 3

4
v
∂v

∂y

]′
(21a)

3

4

∂2v

∂y2
=

[
∂v

∂t
− 1

4
v′′′ − 3(uv)′

]′
(21b)

where u := u2 and v := v3. This coupled equation has never been known, to the present
author’s knowledge, so the system will be new. As expected, (21a) reduces to the KP
equation (4) when v is absent. We observe the resemblance between (21a), (21b) and the
MRKP equations (11a), (11b) or the non-standard SKP equations (12a), (12b), however, they
are not exactly identical. This resemblance obviously comes from the fact that the derivative
in superspace can be read as a square root of the derivative, which is formally equivalent to
the feature of the half-order derivative ∂1/2. In contrast to the supersymmetric extensions, the
extension considered in this section works without using Grassmann numbers.

3.1.2. Extension by the 1/N th-order integrals. Having observed the extension by the half-
order integrals is successful, we now consider more generic extensions by the 1/N th-order
integrals (N = 3, 4, . . .), eKP1/N hierarchies. In these cases, we need to introduce integral
operators ∂−1/N, ∂−2/N , . . . , ∂−(N−1)/N simultaneously to give a consistent Lax equation, since
we have to close the commutator algebra in the Lax equations under the axiom ∂−i∂−j = ∂−i−j .
For N = p, a prime number, there appears a new system coupled to the KP hierarchy. For
example, we give an outline of the N = 3 case, in which the Lax operator should be made
up of

L1/3 = LKP + M1/3 + M2/3 (22)

where

M1/3 = w4∂
−1/3 + w7∂

−4/3 + w10∂
−7/3 + · · · (23)

M2/3 = w5∂
−2/3 + w8∂

−5/3 + w11∂
−8/3 + · · · (24)



Riemann–Liouville integrals of fractional order and extended KP hierarchy 9663

and deg[wm] = m/3. We observe that the standard Lax equation and the definition of the
Hamiltonian similar to the former case give a consistent hierarchy of coupled PDEs. One
can see the lowest coupled PDE arises from the first two non-trivial Lax equations. The
coefficients of ∂ in

∂L1/3

∂t2
= [B2,L1/3] (25)

are

∂−1/3:
∂w4

∂y
= 2w′

7 + w′′
4 (26a)

∂−2/3:
∂w5

∂y
= 2w′

8 + w′′
5 +

(
w2

4

)′
(26b)

∂−1:
∂u2

∂y
= 2u′

3 + u′′
2 + 2(w4w5)

′ (26c)

∂−4/3:
∂w7

∂y
= 2w′

10 + w′′
7 +

(
w2

5

)′
+ 2(w4u2)

′ (26d )

∂−5/3:
∂w8

∂y
= 2w′

11 + w′′
8 +

8

3
w7w

′
4 +

4

3
w4w

′
7 + 2w5u

′
2 − 2

3
w4w

′′
4 + 2u2w

′
5 (26e)

∂−2:
∂u3

∂y
= 2u′

4 + u′′
3 + 2u2u

′
2 +

10

3
w8w

′
4 +

4

3
w4w

′
8 +

8

3
w7w

′
5 +

2

3
w5w

′
7 − 4

3
w5w

′′
4 − 2

3
w4w

′′
5

(26f )

whereas those of

∂L1/3

∂t3
= [B3,L1/3] (27)

are

∂−1/3:
∂w4

∂t
= 3w′

10 + 3w′′
7 + w′′′

4 + 6(w4u2)
′ + 3

(
w2

5

)′
(28a)

∂−2/3:
∂w5

∂t
= 3w′

11 + 3w′′
8 + w′′′

5 + 6(w5u2)
′ + 6(w7w4)

′ + 2w′2
4 + 2w4w

′′
4 (28b)

∂−1:
∂u2

∂t
= 3u′

4 + 3u′′
3 + u′′′

2 + 6u2u
′
2 + 6(w8w4)

′ + 6(w7w5)
′ + w5w

′′
4

+ 3w′
5w

′
4 + 3w2

4w
′
4 + 2w4w

′′
5 . (28c)

These are nine equations for the nine dependent variables so that we can combine them into
the coupled PDE of u2, w4 and w5.

For N being a composite number, we observe that the new system is coupled to the system
coming from the prime factors of N. For example, the eKP1/4 system is a new system coupling
to the eKP1/2 system given above.

Finally, we should remark that the introduction of a pseudo-derivative of irrational order
does not make a finite closed system: we need an uncountable number of additional M such
as (23) and (24).
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3.2. The conservation laws

Since the eKP1/N hierarchy is constructed within the framework of Lax formalism, we expect
that the system is integrable a priori. In fact, we observe that there are infinite conservation
laws, which can be derived by standard procedure [23] for the Lax operator under consideration
L1/N , say, then we find

∂

∂tm
Res

(Ln
1/N

) = ∂

∂x
Pm,n (29)

where the residue is defined as
(Ln

1/N

)
−1 and Pm,n is a differential polynomial of uj and vj .

In appendix A, we give a proof to (29), where we see that the presence of the fractional-order
integral operators does not modify formula (29). Hence, we expect the existence of many
special solutions to the eKP1/N hierarchies, just like the solitons in the original KP.

In addition to these conserved charges with integer degree, we have another set which has
non-integer degree. For concreteness, we consider the eKP1/2, in which there exist conserved
charges with degree k + 1/2 (k = 0, 1, 2, . . .): we can find the charges come from

Res
(
Lk+ 1

2
1/2

)
(30)

where the square root of the Lax operator is constructed by the usual procedure,

L
1
2
1/2 = ∂

1
2 + 1

2v3∂
−1 + 1

2u2∂
− 3

2 + 1
2

(
v5 − 1

4v′
3

)
∂−2 + · · · . (31)

Although we can construct the charges with half-integer degree, there does not exist a consistent

time flow generated by the Hamiltonian Bk+ 1
2

:= Lk+ 1
2

1/2 .
In general, for the eKP1/N (N � 3) we will find the existence of additional sequences of

conserved charges.

3.3. The k-reduction of the eKP1/N

In this subsection, we make a comment on the k-reduction of the eKP1/N , the truncation of the
tlk flow. Unlike the standard KP hierarchy, the reduction condition Lk

1/N = Bk does not work
in the eKP1/N hierarchies due to the property of fractional integrals. For, the compatibility
(6) between the reduction condition and the Lax equation does not hold when the fractional
order ‘derivative’ operators are present in the Hamiltonian Bk . This comes from the fact that
the Leibniz rule for non-integer order is not a finite sum even if the order j is positive; hence
the right-hand side of the corresponding equation to (6) induces negative terms in ∂ , i.e.

([Bk,Bk′ ])− m
N

�= 0 (m = 1, 2, 3, . . .). (32)

For example, the commutator of the Hamiltonians B2 and B3 for the eKP1/2 gives

([B3,B2])− 1
2

= 3
2 (v3u

′
2)

′ − (
v3

3

)′ �= 0 (33)

as well as the coefficient of ∂−m/2 (m = 2, 3, . . .). Although it is not clear at present whether
one can impose consistent reduction conditions on the Lax operator of the eKP1/N , we may
consider the truncated system at hand.

Here, we present the remarkable fact that there exists an algebraic solution to the
2-reduction of the eKP1/2 equations (21a) and (21b), which should be referred to as the
eKdV1/2 equation,

∂u

∂t
= 1

4
u′′′ + 3uu′ − 3

8
(v2)′′ (34a)

∂v

∂t
= 1

4
v′′′ + 3(uv)′. (34b)
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Note the strong resemblance between the supersymmetric KdV equation [21] and (34a), (34b).
The solution is an extension of the rational solution to the KdV equation:

u(x, t) = − 5

16

1

(x + ct)2
+

c

3
(35a)

v(x, t) = ±
√

165

24

1

(x + ct)3/2
(35b)

where c is a constant with deg[c] = 2, which is required by keeping the correct degree of
the dependent variables. It is an important future subject to find a systematic procedure for
constructing regular solutions other than the singular one obtained here.

4. The Riemann–Liouville integrals of fractional order

So far, we constructed the extensions of the KP hierarchy by introducing the pseudo-differential
operator of fractional order, the fractional integral. However, we have treated such operators
as only generators of a non-commutative algebra. In the construction of the standard KP
hierarchy, we use the Leibniz rule of negative-order derivatives (1), which can be realized by
the iterative use of integration by parts, e.g., for j = 1,

∂−1(fg) =
∫ x

fg dx = f G(1) −
∫ x

f ′G(1) dx

= f G(1) − f ′G(2) +
∫ x

f ′′G(2) dx

= f G(1) − f ′G(2) + f ′′G(3) − · · ·

=
∞∑

k=0

(−1)kf (k)G(k+1) (36)

where G(k) is the k times indefinite integral of g. The cases of higher order j can be shown
by multiplicative operation of (36). Hence, we accept the statement that the negative-order
derivative operator is equivalent to the indefinite integral operator.

For the case of fractional j , how can we realize formula (1)? To find the appropriate
fractional integration/derivation on a function assumed to be existing in the last section, we
recall the Riemann–Liouville integral of order α ∈ C for Re α > 0,

Iαf (x) := 1

�(α)

∫ x

a

(x − z)α−1f (z) dz (37)

where f (x) is assumed to be locally integrable and rapidly decreasing on the lower boundary
a. We realize that when Re α < 0, α /∈ −N, (37) should be read as

Iαf (x) := Iα+nf (n)(x) = dn

dxn
Iα+nf (x) (38)

where n is the first integer of n + Re α > 0. The assumption for f (x) guarantees the last
equality in (38), which means that the Riemann–Liouville integral commutes with the ordinary
derivative. Hence, we understand that definition (37) can be extended by analytic continuation
to the whole α, for details see appendix B. One can also show, when α tends to an integer,
the Riemann–Liouville integral turns out to be the ordinary integration/differentiation, as it
should be. In addition, we will observe in appendix B that the Riemann–Liouville integral
complies with the exponential or additive index law, IαIβ = Iα+β , which is assumed in the
derivation of the eKP1/N hierarchy.
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We exhibit the action of the Riemann–Liouville integral on some functions,

Iα eλx = 1

λα
eλx (39)

where λ > 0 and,

Iαxµ = �(µ + 1)

�(α + µ + 1)
xµ+α (40)

where the operand, xµ, is defined as zero if x < 0.
In appendix B, we observe that definitions (37) and (38) lead to the Leibniz rule (1) for

fractional order,

Iα(fg) =
∞∑

k=0

(−α

k

)
f (k)(I k+αg) (41)

where (−α

k

)
= (−1)k

�(α + k)

�(α)k!
. (42)

Note that (41) turns out to be (36) as α tends to 1, obviously. In this respect, we should remark
the fact that the Riemann–Liouville integrals do not define the Leibniz rule (41) uniquely:
further generalization to the rule is also possible [6]. However, it is sufficient for the present
purpose that the Riemann–Liouville integrals can fulfil (41). With the features observed
above, we accept that the Riemann–Liouville integrals yield the pseudo-differential operators
of fractional order,

∂−α = Iα. (43)

Thus, we find that the pseudo-differential operator of fractional order in the Lax operator of
the eKP1/N hierarchy is not only an element of a non-commutative algebra, but also a concrete
operator on a certain class of functions.

Although we do not need the explicit operation of the fractional integrals in the derivation
of the extended KP hierarchies considered in the previous section, we expect that the direct
application of the Riemann–Liouville integral (37) is required in further consideration of
the eKP1/N system. For, we will need the Riemann–Liouville integrals when we consider
the analytic solutions to the eKP1/N hierarchies through, e.g., the inverse scattering method,
Bäcklund transformation, Painlevé analysis and so on [22].

5. Concluding remarks

In this paper, we have considered the extensions of the KP hierarchy by introducing fractional-
order integral/differential operators, the eKP1/N . In particular, if we introduce the half-order
integral operator, we find the resulted eKP1/2 hierarchy is analogous to the SKP hierarchies.
Other extensions, the eKP1/N hierarchies, are also considered and the fact that there exist
infinite conserved currents is observed. We have also found an algebraic solution to the
eKdV1/2 equation, the reduced eKP1/2 equation.

To obtain a deep understanding of the eKP1/N hierarchies, it is profitable to make an
analysis in the Sato formulation, and also the tau-function formulation [4], just as in the case of
the standard KP hierarchy and the SKP hierarchies [18–20]. Apart from the whole hierarchies,
it will be interesting to investigate simply the integrability of the coupled equations such as
(21a) and (21b) through the Painlevé analysis [24]. Another approach is also attainable: the
Hirota bilinear method is applicable to find special solutions such as solitons. As mentioned
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in the last section, it will be necessary to consider the Riemann–Liouville integrals explicitly
for these analyses.

Incidentally, apart from integrable systems there are many works on fractional-order
evolution equations for relaxation, diffusion, stochastic process and so on [9]. Although
we have obtained the nonlinear PDEs with normal derivative through the application of
fractional calculus, it is intriguing to formulate a systematic procedure for creating the PDEs
with anomalous derivative, i.e. fractional-order derivative. A possibility will be given by
the application of another ‘Leibniz rule’ in the formulation given in this paper; in fact,
the Riemann–Liouville integrals enjoy miscellaneous types of ‘Leibniz rule’ as mentioned in
the last section.

Appendix A

In this appendix we give the proof to (29) for the eKP1/N hierarchy. First of all we have

∂

∂tm
Res

(Ln
1/N

) = Res

(
∂

∂tm
Ln

1/N

)
= Res

([Bm,Ln
1/N

])
. (A.1)

On the right-hand side, each term in the bracket is of the form f ∂pg∂q − g∂qf ∂p, where
f and g are differential polynomials of dependent variables and p and q are, in general, the
multiples of 1/N admitting negative values. Now we observe by the Leibniz rule,

f ∂pg∂q = f

∞∑
j=0

(
p

j

)
g(j)∂q+p−j (A.2)

so the contribution of this term to the residue occurs only when q + p is an integer with
q + p � −1. For p and q enjoying these conditions, we find

Res(f ∂pg∂q) =
(

p

p + q + 1

)
fg(p+q+1) (A.3)

where p + q + 1 is a non-negative integer so that the right-hand side is well defined. Similar
consideration for g∂qf ∂p leads to

Res([f ∂p, g∂q]) =
(

p

p + q + 1

)
fg(p+q+1) −

(
q

p + q + 1

)
f (p+q+1)g

=
(

p

p + q + 1

)
fg(p+q+1) − (−1)p+q+1

(
p

p + q + 1

)
f (p+q+1)g

=
(

p

p + q + 1

)
{fg(p+q+1) − (−1)p+q+1f (p+q+1)g} (A.4)

where the fact (
α

j

)
= (−1)j

(
j − 1 − α

j

)
(A.5)

for α ∈ C is used. Thus we find only the cases p + q + 1 ∈ N contribute; however, we easily
observe

fg(k) − (−1)kf (k)g = ∂

∂x




k−1∑
j=0

(−1)jf (j)g(k−j−1)


 (A.6)

for any k ∈ N. We, therefore, conclude that all the contribution to the residue on the right-
hand side of (A.1) is total derivative. In this proof, obviously, the number n in (A.1) is not
restricted to integer: we can make sequences of conserved charges such as (30) other than
integer sequences.
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Appendix B

This appendix presents some of the important properties of the Riemann–Liouville
integrals (37).

First of all, we observe the exponential law IαIβ = Iα+β . For Re α, Re β > 0,

IαIβf (x) = 1

�(α)

∫ x

a

dz(x − z)α−1 1

�(β)

∫ z

a

dw(z − w)β−1f (w)

= 1

�(α)�(β)

∫ x

a

dw f (w)

∫ x

z

dz(x − z)α−1(z − w)β−1

= 1

�(α + β)

∫ x

a

dw(x − w)α+β−1f (w)

= Iα+βf (x) (B.1)

where we changed the integration order and used the fact that the z-integral in the second line
was expressed by the beta function. This formula can be extended to the case when one or both
of Re α and Re β are negative, by (38) and the commutativity of Iα and ordinary derivative.

Next we derive the Leibniz rule for fractional-order integral/differential operator (41).
For Re α > 0, if we expand one of the operands, say, f in Taylor series, we find

Iα(f (x)g(x)) = 1

�(α)

∫ x

a

(x − z)α−1f (z)g(z) dz

= 1

�(α)

∫ x

a

(x − z)α−1
∞∑

k=0

(−1)k

k!
f (k)(x)(x − z)kg(z) dz

= 1

�(α)

∞∑
k=0

(−1)k

k!
f (k)(x)

∫ x

a

(x − z)k+α−1g(z) dz

= 1

�(α)

∞∑
k=0

(−1)k

k!
f (k)(x)�(k + α)Ik+αg(x)

=
∞∑

k=0

(−α

k

)
f (k)(x)I k+αg(x) (B.2)

which can be extended to Re α < 0 by ordinary differentiation (38).
Finally, we comment on the Riemann–Liouville integral of order Re α < 0, i.e. a

differentiation of arbitrary order. In definition (38) the integral is well defined; however,
if we simply put Re α < 0 in the definition of Iα (37), then the definition turns out to be a
divergent integral whatever the function f is, due to the singularity of the kernel (x − z)α−1

at the upper bound. To give a well-defined meaning for the divergent integral, we can take
the finite part of it, the Pf (partie finie) prescription. To see this we consider only the case
−1 < Re α < 0 for simplicity, the case of Re α < −1 can be treated similarly. We now define
the ‘regularized integral’ with a positive cut-off parameter ε as

Iα
ε f (x) := 1

�(α)

∫ x−ε

a

(x − z)α−1f (z) dz

= 1

�(α)

∫ x−a

ε

sα−1f (x − s) ds

= 1

�(α + 1)

{
sαf (x − s)

∣∣∣x−a

ε
+

∫ x−a

ε

sαf ′(x − s) ds

}
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= 1

�(α + 1)

{
−εαf (x − ε) +

∫ x−a

ε

sαf ′(x − s) ds

}

= 1

�(α + 1)

{
−εα

∞∑
k=0

(−1)k

k!
f (k)(x)εk +

∫ x−a

ε

sαf ′(x − s) ds

}

(B.3)

due to the condition f (a) = 0 and �(α + 1) = α�(α). In the last line of (B.3), when
we take ε → 0, the terms of εα+k in the infinite sum are zero if k � 1, and also the
integral term remains finite. Thus we can perform the Pf prescription by the following
definition:

Iαf (x) = 1

�(α)
Pf

∫ x

a

(x − z)α−1f (z) dz

:= lim
ε→0

{
Iα
ε f (x) − (−1)

�(α + 1)
εαf (x)

}

= 1

�(α + 1)

∫ x−a

0
sαf ′(x − s) ds

= Iα+1f ′(x). (B.4)

We, therefore, conclude that definition (38) is well defined and the Riemann–Liouville integral
can be continued analytically to negative Re α.
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